If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-2Y^2+14Y+3
We move all terms to the left:
-(-2Y^2+14Y+3)=0
We get rid of parentheses
2Y^2-14Y-3=0
a = 2; b = -14; c = -3;
Δ = b2-4ac
Δ = -142-4·2·(-3)
Δ = 220
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{220}=\sqrt{4*55}=\sqrt{4}*\sqrt{55}=2\sqrt{55}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{55}}{2*2}=\frac{14-2\sqrt{55}}{4} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{55}}{2*2}=\frac{14+2\sqrt{55}}{4} $
| 9x-2=38 | | 1x8=95 | | 6x+28=25x-3 | | 4d=d+54 | | 4x-8=95+3x-16 | | 49.99+33.99x=321.99 | | 7x-2(x+1)=4x+5 | | 7x-12=4x+57 | | -4v-38=-6(v+7) | | 75x+65=327.50 | | 56+1x=180 | | -3(v-4)=-7v+24 | | (d+4)/(2d+2)=(0.75) | | f(3)=4(3+5)-2 | | 40.5p+40=112 | | -6w+14=-4(w+1) | | 16.4=4x-12.7 | | 40+0.05x=58 | | 8(3x+4)-16=40 | | 40x+0.05=58 | | -2b-21.4=16.3 | | 45=5/4y | | 9x-7+2x=37 | | 14000+12x=24200 | | -1+5(3r-6)=4(r+6) | | -2=-z/8-7 | | -(-6-6n)-(n+6)=1+6n-2n-2 | | 8x-8=5x+11 | | 5(2z)+1=15 | | 8x-8=5x+22 | | 22-v=-4+2(4+v) | | 53+c=90 |